Эллиптические интегралы не выражаются через элементарные функции. По определению, элементарные функции — функции, определяемые формулами, содержащими конечное число алгебраических или тригонометрических операций, производимых над аргументом, функцией и некоторыми постоянными.
Эллиптические интегралы в лежандровой форме 1-го, 2-го и 3-го родов, а также интегралы, сходные с ними (с заменой знаков плюс на минус и/или с заменой cos на sin или наоборот) точно представимы функциональным рядом. Такое представление не является элементарной функцией ввиду бесконечного числа членов этого ряда.
Руководствуясь соображениями достижения необходимой точности и, взяв в расчёт n начальных членов ряда и пренебрегая остатком, то есть суммой остальных членов ряда от n+1 до , получим аппроксимацию (определённого или неопределённого) эллиптического интеграла в виде элементарной функции. Аппроксимации эллиптических интегралов применяются аналогично обычным интегралам.
Вальверде, не Вальверде - какая блин разница для зиданцев, все равно с 0-3 на 0-5 перебиваются
Зидун = Бенитес
Это совсем другое, та фирма называется VEKA (Века). А здесь речь идет о BEKO (Беко).